

FURANOEREMOPHILANES FROM *SENECIO SMITHII**

FERDINAND BOHLMANN, CHRISTA ZDERO, ROBERT M. KING† and HAROLD ROBINSON†

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany; †Smithsonian Institution, Washington, DC 20560, U.S.A.

(Received 28 January 1981)

Key Word Index—*Senecio smithii*; Compositae; sesquiterpenes; furanoeremophilanes; bisabolone derivatives.

Abstract—The investigation of *Senecio smithii* afforded 17 furanoeremophilanes, six of them being isolated for the first time. Furthermore, two new bisabolone derivatives were present. The structures were elucidated by spectroscopic methods and a few chemical transformations. The chemotaxonomic situation is discussed briefly.

INTRODUCTION

The large cosmopolitan genus *Senecio* obviously is not very homogeneous [1]. We have therefore studied the chemistry of many representatives of this genus and of related ones [2]. In continuation of this programme we now have studied the constituents of a species from Ecuador, *Senecio smithii* DC. Again, this plant contains mainly furanoeremophilanes, which are widespread in the Senecioneae. Six of these compounds were not isolated before, all belonging to the 9-keto series. Furthermore, two bisabolones were present.

RESULTS AND DISCUSSION

The aerial parts afforded β -farnesene, eupatene (22) [3] and the furanoeremophilanes 1 [4], 3 [5], 4 [6], 9 [5], 10 [6], 11 [8], 12 [9], 15 [6] and 16 [6] as well as the carbinol 21 [10]. Furthermore, six additional furanoeremophilanes were present, the senecioates 2 and 6, the angelate 7, the isobutyrate 8, the alcohol 14 as well as the diketone 17. The structures could be deduced from the ^1H NMR data (Table 1). In the spectrum of 2 the presence of a 3α -senecioyloxy residue followed from the three-fold doublet at 4.76 ppm and the typical signals of the ester group. Irradiation at 4.75 ppm allowed the assignment of H-2 and H-4, as the latter was coupled with the methyl doublet at 0.94 ppm. By further decouplings all other signals could be assigned too. The couplings of H-10 showed the presence of a *trans*-decalin system. The data observed were similar to those of known euryopsonol esters [5]. The additional 1α -hydroxy group in 6 clearly followed from the ^1H NMR data too. While most signals were similar to those of 2, an additional three-fold doublet at 4.24 ppm and missing couplings for H-2 and H-10 showed the presence of a 1-hydroxy group, its stereochemistry being deduced from the couplings $J_{1,2}$ and $J_{1,10}$. Since in the spectra of 7 and 8 only the signals of the senecioate residue were replaced by those of an

angelate and an isobutyrate group respectively, their structures could be directly assigned. The same is true for 14, its ^1H NMR spectrum being very similar to that of the known acetate 15 [6], only the H-6 β signal being shifted up-field and split by coupling with the hydroxy proton (2.38 d). All other signals could be assigned by spin decoupling. The spectroscopic data of 17, molecular formula $\text{C}_{15}\text{H}_{16}\text{O}_4$, showed that this furan must be a 6,9-diketone with a $1,10\beta$ -epoxide group, as could be deduced from the chemical shifts of H-14 and H-15. Furthermore, 17 was obtained by manganese dioxide oxidation of 14.

The less polar fractions further contained the bisabolone derivatives 18 and 19. Their structures followed from the ^1H NMR data, which were close to those of bisabolone [11] and the corresponding 12-oic methyl ester [12]. The stereochemistry of the 10,11 double in 19 directly followed from the chemical shifts of H-10 and H-12. Since saponification of 18 gave 20, which on oxidation led to 19, the stereochemistry of the 10,11 double bond of the acetate was established. The stereochemistry at C-6 and C-7 followed from the couplings observed and by comparison with the spectrum of bisabolone with known stereochemistry and established absolute configuration [13]. As the sign of the optical rotation of 18 and 19 was also negative, the absolute configurations should be the same.

The roots also afforded β -farnesene, eupatene (22), 6-9, 15 and 13, its stereochemistry at C-1 being assigned previously [14], supporting the proposed stereochemistry of the other epoxides.

The compounds isolated from *S. smithii* indicate a relationship to the woody cacoiloid group [14]. However, so far only a few South American species have been investigated chemically; more species need to be investigated before chemotaxonomic conclusion can be drawn.

EXPERIMENTAL

The air-dried plant material (voucher RMK 7481; US National Herbarium, Washington) was extracted with Et_2O -petrol (1:2) and the resulting extracts were separated first by CC (Si gel) and further by repeated TLC (Si gel) and partly by HPLC (reversed phase, RP2, $\text{MeOH}-\text{H}_2\text{O}$, 3:2). Known

*Part 370 in the series "Naturally Occurring Terpene Derivatives". For Part 369 see Bohlmann, F., Jakupovic, J., Ahmed, M., Robinson, H. and King, R. M. (1981) *Phytochemistry* 20, 2383.

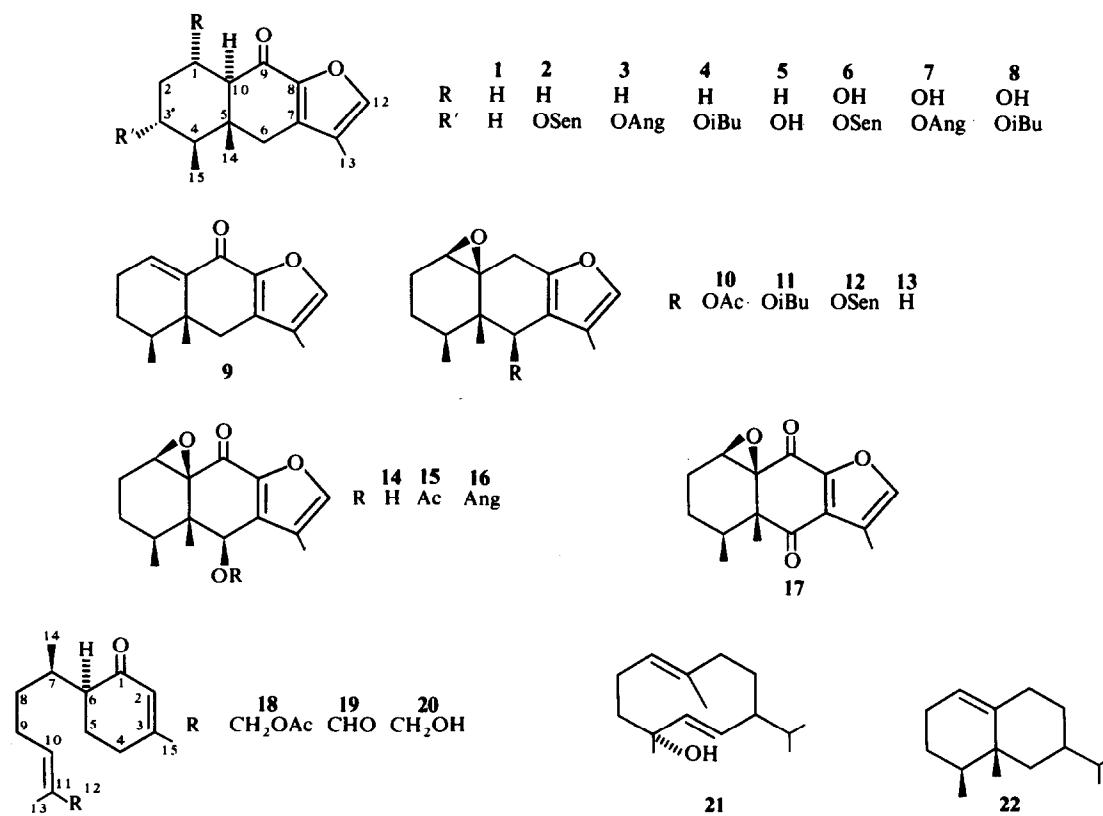


Table 1. ^1H NMR spectral data of compounds 2, 6–8, 14 and 17 (400 MHz, CDCl_3 , TMS as internal standard)

	2	6	7	8	14*	17
H-1 α	2.28 <i>dddd</i>	—	—	—	3.34 <i>br d</i>	3.48 <i>dd</i>
H-1 β	1.53 <i>dddd</i>	4.24 <i>br ddd</i>	4.26 <i>br ddd</i>	4.24 <i>br ddd</i>	—	—
H-2 α	1.33 <i>dddd</i>	1.48 <i>ddd</i>	1.51 <i>ddd</i>	1.45 <i>ddd</i>	1.87 <i>dddd</i>	1.84 <i>dddd</i>
H-2 β	2.19 <i>dddd</i>	2.43 <i>ddd</i>	2.47 <i>ddd</i>	2.40 <i>ddd</i>	2.06 <i>ddd</i>	2.11 <i>ddd</i>
H-3 α	—	—	—	—	1.70 <i>dddd</i>	1.51 <i>ddd</i>
H-3 β	4.75 <i>ddd</i>	4.87 <i>ddd</i>	4.92 <i>ddd</i>	4.80 <i>ddd</i>	1.49 <i>ddd</i>	1.28 <i>ddd</i>
H-4	1.74 <i>dq</i>	1.89 <i>dq</i>	1.86 <i>dq</i>	1.81 <i>dq</i>	2.06 <i>ddq</i>	2.35 <i>ddq</i>
H-6	2.74 <i>d</i>	2.71 <i>d</i>	2.73 <i>d</i>	2.71 <i>d</i>	5.23 <i>d</i>	—
H-6'	2.47 <i>d</i>	2.52 <i>d</i>	2.53 <i>d</i>	2.52 <i>d</i>		—
H-10	2.41 <i>dd</i>	2.42 <i>d</i>	2.44 <i>d</i>	2.42 <i>d</i>	—	—
H-12	7.36 <i>br s</i>	7.42 <i>br s</i>	7.43 <i>br s</i>	7.42 <i>br s</i>	7.46 <i>q</i>	7.54 <i>br s</i>
H-13	1.98 <i>br s</i>	2.00 <i>br s</i>	2.01 <i>br s</i>	2.01 <i>br s</i>	2.19 <i>br s</i>	2.30 <i>br s</i>
H-14	0.84 <i>s</i>	0.87 <i>s</i>	0.89 <i>s</i>	0.86 <i>s</i>	1.16 <i>s</i>	1.37 <i>s</i>
H-15	0.94 <i>d</i>	0.96 <i>d</i>	0.98 <i>d</i>	0.95 <i>d</i>	1.08 <i>d</i>	1.13 <i>d</i>
OCOR	5.68 <i>br s</i> 2.17 <i>br s</i> 1.89 <i>br s</i>	5.69 <i>br s</i> 2.18 <i>br s</i> 1.91 <i>br s</i>	6.07 <i>qq</i> 1.98 <i>dq</i> 1.91 <i>dq</i>	2.56 <i>qq</i> 1.18 <i>d</i> 1.17 <i>d</i>	— — —	— — —

J (Hz): compound 2: 1 α ,2 α = 1 α ,2 β = 3; 1 α ,10 = 3.5; 1 α ,1 β = 1 β ,2 α = 12; 1 β ,2 β = 3.5; 1 β ,10 = 2 α ,2 β = 12; 2 α ,3 β = 11; 2 β ,3 β = 4.5; 3 β ,4 α = 11; 6,6' = 16.5; 4,15 = 7; compounds 6–8: 1 β ,2 α = 11.5; 1 β ,2 β = 5; 1 β ,10 = 11; 2 α ,2 β = 12; 2 α ,3 β = 11; 2 β ,3 β = 5; 3 β ,4 α = 11; 4,15 = 7; 6,6' = 17; compound 14: 1 α ,2 α = 4.5; 2 α ,2 β = 15; 2 α ,3 α = 3.5; 2 α ,3 β = 7; 2 β ,3 α ~ 10; 2 β ,3 β ~ 4; 3 α ,3 β ~ 15; 3 α ,4 α ~ 3; 3 β ,4 α = 11; 4 α ,15 = 7; 6 α ,OH = 9; compound 17: 1 α ,2 α = 3; 1 α ,2 β = 1.5; 2 α ,2 β = 15; 2 α ,3 α = 5; 2 α ,3 β = 8; 2 β ,3 α = 7.5; 2 β ,3 β = 5; 3 α ,3 β = 13; 3 α ,4 α = 4.5; 3 β ,4 α = 9; 4 α ,15 = 7; OAng: 3'4' = 7; 3',5' = 4',5' = 1.5; OiBu: 2',3' = 7.

*OH 2.38 d.

Table 2. ^1H NMR spectral data of compounds 18–20 (400 MHz, CDCl_3 , TMS as internal standard)

	18	19	20
H-2	5.86 <i>q</i>	5.87 <i>q</i>	5.86 <i>q</i>
H-4	2.31 <i>m</i>	2.33 <i>m</i>	2.31 <i>m</i>
H-5	1.32 <i>m</i>	1.48 <i>m</i>	1.32 <i>m</i>
H-5'	1.78 <i>dddd</i>	1.81 <i>dddd</i>	1.78 <i>dddd</i>
H-6	2.14 <i>ddd</i>	2.16 <i>ddd</i>	2.15 <i>ddd</i>
H-7	2.31 <i>m</i>	2.33 <i>m</i>	2.31 <i>m</i>
H-8	1.32 <i>m</i>	1.48 <i>m</i>	1.32 <i>m</i>
H-9	2.00 <i>m</i>	{ 2.40 <i>m</i> 2.00 <i>m</i>	2.00 <i>m</i>
H-10	5.46 <i>br t</i>	6.50 <i>br t</i>	5.40 <i>br t</i>
H-12	4.43 <i>br s</i>	9.39 <i>s</i>	3.99 <i>br s</i>
H-13	1.64 <i>br s</i>	1.75 <i>br s</i>	1.66 <i>br s</i>
H-14	0.80 <i>d</i>	0.85 <i>d</i>	0.79 <i>d</i>
H-15	1.93 <i>br s</i>	1.95 <i>br d</i>	1.93 <i>br s</i>
OAc	2.07 <i>s</i>	—	—

J (Hz): 2.15 = 1; 5.6 = 11; 5'.6 = 6.7 = 4.3; 5.5' = 15; 7.14 = 6.5; 9.10 = 7.

compounds were identified by comparing the IR and ^1H NMR spectra with those of authentic material.

The aerial parts (830 g) afforded 5 mg β -farnesene, 15 mg 1, 40 mg 2 (Et_2O –petrol, 1:1), 10 mg 3, 5 mg 4, 10 mg 5, 25 mg 5 (Et_2O –petrol, 3:1), 10 mg 7 and 5 mg 8 (Et_2O –petrol, 3:1, separated by HPLC), 5 mg 9, 15 mg 10, 30 mg 11, 5 mg 12, 25 mg 14 (Et_2O –petrol, 3:1, separated from 5 by HPLC), 60 mg 15, 10 mg 16, 30 mg 17 (Et_2O –petrol, 1:1), 30 mg 18 (Et_2O –petrol, 1:1), 10 mg 19 (Et_2O –petrol, 1:1), 20 mg 21 and 5 mg 22, while the roots (150 g) gave 5 mg β -farnesene, 3 mg 6, 3 mg 7, 2 mg 8, 2 mg 9, 5 mg 13, 10 mg 15 and 5 mg 22.

Euryopsonol senocioate (2). Colourless crystals, mp 195° (Et_2O), IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1715 (C=CCO₂R), 1680 (C=O); MS *m/z* (rel. int.): 330.183 (M⁺, 10) (C₂₀H₂₆O₄), 230 (M – RCO₂H,

41), 215 (230 – Me, 28), 162 (C₄H₇CO⁺, 100), 55 (83 – CO, 74), 41), 215 (230 – Me, 28), 162 (C₄H₇CO⁺, 100), 55 (83 – CO, 74).

$[\alpha]_{24}^{\text{D}} = \frac{589}{-61.8} \frac{578}{-65.0} \frac{546}{-76.7} \frac{436}{-159.0} \frac{365 \text{ nm}}{-206.3}$ (c = 0.6, CHCl₃).

1a-Hydroxyeuryopsonol senocioate (6). Colourless crystals, mp 194° (Et_2O), IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 3520 (OH), 1720 (C=CCO₂R), 1670, 1540 (α -furan ketone); MS *m/z* (rel. int.): 346.178 (M⁺, 3) (C₂₀H₂₆O₅), 246 (M – RCO₂H, 13), 228 (246 – H₂O, 20), 213 (228 – Me, 24), 163 (C₁₀H₁₁O₂, 100), 83 (C₄H₇CO⁺, 49), 55 (83 – CO, 48).

$[\alpha]_{24}^{\text{D}} = \frac{589}{0} \frac{578}{0} \frac{546}{-2.3} \frac{336}{-24.6} \frac{365 \text{ nm}}{-123.7}$ (c = 0.35, CHCl₃).

1a-Hydroxyeuryopsonol angelate (7). Colourless crystals, mp 150° (Et_2O –petrol), IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 3520 (OH), 1715 (C=CCO₂R), 1670, 1545 (α -furan ketone); MS *m/z* (rel. int.): 346.178 (M⁺, 3) (C₂₀H₂₆O₅), 246 (M – RCO₂H, 6), 228 (246 – H₂O, 8), 213 (228 – Me), 163 (C₁₀H₁₁O₂, 100), 83 (C₄H₇CO⁺, 26), 55 (83 – CO, 62).

$[\alpha]_{24}^{\text{D}} = \frac{589}{-0.8} \frac{578}{-1.3} \frac{546}{-3.4} \frac{436}{-28.0} \frac{365 \text{ nm}}{-149.1}$ (c = 0.95, CHCl₃).

1a-Hydroxyeuryopsonol isobutyrate (8). Colourless gum, IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 3520 (OH), 1730 (CO₂R), 1665, 1540 (α -furan

ketone); MS *m/z* (rel. int.): 334.178 (M⁺, 2) (C₁₉H₂₆O₅), 246 (M – RCO₂H, 4), 228 (246 – H₂O, 14), 213 (228 – Me, 21), 163 (C₁₀H₁₁O₂, 100), 71 (C₃H₇CO⁺, 8).

6 β -Hydroxy-1 β ,10 β -epoxyfuranoeremophil-9-one (14). Colourless crystals, mp 183° (Et_2O –petrol), IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 3610 (OH), 1690, 1540 (α -furan ketone); MS *m/z* (rel. int.): 262.120 (M⁺, 58) (C₁₅H₁₈O₄), 244 (M – H₂O, 10), 205 (M – C₄H₉, 100), 177 (205 – CO, 85). 5 mg 14 in 3 ml Et_2O was stirred for 2 hr with 50 mg MnO₂. TLC (Et_2O –petrol, 1:1) afforded 3 mg 17, identical with the natural diketone.

6,9-Dioxo-1 β ,10 β -epoxyfuranoeremophilane (17). Colourless crystals, mp 104° (Et_2O –petrol), IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1700 (CO), 1685, 1530 (α -furan ketone); MS *m/z* (rel. int.): 260.105 (M⁺, 100) (C₁₅H₁₆O₄), 245 (M – Me, 28), 227 (245 – H₂O, 23), 217 (245 – CO, 53), 189 (217 – CO, 25).

6,9-Dioxo-1 β ,10 β -epoxyfuranoeremophilane (17). Colourless crystals, mp 104° (Et_2O –petrol), IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1700 (CO), 1685, 1530 (α -furan ketone); MS *m/z* (rel. int.): 260.105 (M⁺, 100) (C₁₅H₁₆O₄), 245 (M – Me, 28), 227 (245 – H₂O, 23), 217 (245 – CO, 53), 189 (217 – CO, 25).

$[\alpha]_{24}^{\text{D}} = \frac{589}{-26.7} \frac{578}{-30.0} \frac{546}{-37.5} \frac{436 \text{ nm}}{-99.2}$ (c = 0.12, CHCl₃).

12-Acetoxybisabol-1-one (18). Colourless oil, IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1750, 1250 (OAc), 1680, 1640 (C=C=CO); MS *m/z* (rel. int.): 278 (M⁺, 0.1), 218.167 (M – AcOH, 13) (C₁₅H₂₂O), 110 (C₇H₁₀O, 100, McLafferty), 95 (110 – Me, 18), 82 (110 – CO, 9); CI (isobutane): 279 (M + 1, 18), 219 (279 – AcOH, 100).

$[\alpha]_{24}^{\text{D}} = \frac{589}{-17.7} \frac{578}{-18.8} \frac{546}{-23.0} \frac{436}{-55.7} \frac{365 \text{ nm}}{-271.3}$ (c = 0.6, CHCl₃).

10 mg 18 in 1 ml MeOH were heated for 5 min with 100 mg KOH in 0.5 ml H₂O. TLC (Et_2O –petrol, 1:1) afforded 6 mg 20 ('¹H NMR see Table 2), which on stirring with 100 mg MnO₂ in 2 ml Et_2O (2 hr) gave 3 mg 19, identical with the natural compound ('¹H NMR).

1-Oxo-bisabol-12-ol (19). Colourless oil, IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 2740, 1735 (CHO), 1680 (C=CC=O); MS *m/z* (rel. int.): 234.162 (M⁺, 4) (C₁₅H₂₂O₂), 206 (M – CO, 2), 110 (C₇H₁₀O, 100, McLafferty), 95 (110 – Me, 33), 82 (110 – CO, 43).

Acknowledgement—We thank the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- Jeffrey, C., Halliday, P., Wilmot-Dear, M. and Jones, S. W. (1977) *Kew Bull.* **32**, 47.
- Bohlmann, F. and Ziesche, J. (1980) *Phytochemistry* **19**, 1851.
- Harmatha, J., Samek, Z., Novotny, L., Herout, V. and Sorm, F. (1969) *Collect. Czech. Chem. Commun.* **34**, 1739.
- Novotny, L., Toman, J. and Herout, V. (1968) *Phytochemistry* **7**, 1349.
- Bohlmann, F., Zdero, C. and Grenz, M. (1974) *Chem. Ber.* **107**, 2730.
- Bohlmann, F., Zdero, C. and Rao, N. (1972) *Chem. Ber.* **105**, 3523.
- Rivett, D. and Wooland, G. R. (1967) *Tetrahedron* **23**, 2431.
- Bohlmann, F. and Zdero, C. (1976) *Chem. Ber.* **109**, 819.
- Bohlmann, F. and Zdero, C. (1974) *Chem. Ber.* **107**, 2912.
- Bohlmann, F., Knoll, K.-H., Zdero, C., Mahanta, P. K., Grenz, M., Suwita, A., Ehlers, D. and LeVan, N. (1977) *Phytochemistry* **16**, 965.
- Bohlmann, F., Zdero, C. and Schöneweiss, S. (1976) *Chem. Ber.* **109**, 3366.
- Bohlmann, F. and Zdero, C. (1978) *Phytochemistry* **17**, 2032.
- Kreiser, W. (1976) *Habilitationsschrift*, T. U. Braunschweig.
- Bohlmann, F., Zdero, C., Berger, D., Suwita, A., Mahanta, P. K. and Jeffrey, C. (1979) *Phytochemistry* **18**, 79.